3.1.22 \(\int \sec (c+d x) (a+a \sec (c+d x))^3 \, dx\) [22]

Optimal. Leaf size=72 \[ \frac {5 a^3 \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac {4 a^3 \tan (c+d x)}{d}+\frac {3 a^3 \sec (c+d x) \tan (c+d x)}{2 d}+\frac {a^3 \tan ^3(c+d x)}{3 d} \]

[Out]

5/2*a^3*arctanh(sin(d*x+c))/d+4*a^3*tan(d*x+c)/d+3/2*a^3*sec(d*x+c)*tan(d*x+c)/d+1/3*a^3*tan(d*x+c)^3/d

________________________________________________________________________________________

Rubi [A]
time = 0.06, antiderivative size = 72, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 5, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.263, Rules used = {3876, 3855, 3852, 8, 3853} \begin {gather*} \frac {a^3 \tan ^3(c+d x)}{3 d}+\frac {4 a^3 \tan (c+d x)}{d}+\frac {5 a^3 \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac {3 a^3 \tan (c+d x) \sec (c+d x)}{2 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]*(a + a*Sec[c + d*x])^3,x]

[Out]

(5*a^3*ArcTanh[Sin[c + d*x]])/(2*d) + (4*a^3*Tan[c + d*x])/d + (3*a^3*Sec[c + d*x]*Tan[c + d*x])/(2*d) + (a^3*
Tan[c + d*x]^3)/(3*d)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 3852

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Dist[-d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 3853

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Csc[c + d*x])^(n - 1)/(d*(n
- 1))), x] + Dist[b^2*((n - 2)/(n - 1)), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n,
 1] && IntegerQ[2*n]

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 3876

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Int[Expand
Trig[(a + b*csc[e + f*x])^m*(d*csc[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0]
 && IGtQ[m, 0] && RationalQ[n]

Rubi steps

\begin {align*} \int \sec (c+d x) (a+a \sec (c+d x))^3 \, dx &=\int \left (a^3 \sec (c+d x)+3 a^3 \sec ^2(c+d x)+3 a^3 \sec ^3(c+d x)+a^3 \sec ^4(c+d x)\right ) \, dx\\ &=a^3 \int \sec (c+d x) \, dx+a^3 \int \sec ^4(c+d x) \, dx+\left (3 a^3\right ) \int \sec ^2(c+d x) \, dx+\left (3 a^3\right ) \int \sec ^3(c+d x) \, dx\\ &=\frac {a^3 \tanh ^{-1}(\sin (c+d x))}{d}+\frac {3 a^3 \sec (c+d x) \tan (c+d x)}{2 d}+\frac {1}{2} \left (3 a^3\right ) \int \sec (c+d x) \, dx-\frac {a^3 \text {Subst}\left (\int \left (1+x^2\right ) \, dx,x,-\tan (c+d x)\right )}{d}-\frac {\left (3 a^3\right ) \text {Subst}(\int 1 \, dx,x,-\tan (c+d x))}{d}\\ &=\frac {5 a^3 \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac {4 a^3 \tan (c+d x)}{d}+\frac {3 a^3 \sec (c+d x) \tan (c+d x)}{2 d}+\frac {a^3 \tan ^3(c+d x)}{3 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B] Leaf count is larger than twice the leaf count of optimal. \(154\) vs. \(2(72)=144\).
time = 5.57, size = 154, normalized size = 2.14 \begin {gather*} -\frac {a^3 \sec ^6\left (\frac {1}{2} (c+d x)\right ) (1+\sec (c+d x))^3 \left (60 \cos ^3(c+d x) \left (\log \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )-\log \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )\right )-\sec (c) (50 \sin (d x)-20 \sin (2 c+d x)+9 \sin (c+2 d x)+9 \sin (3 c+2 d x)+22 \sin (2 c+3 d x))-4 \cos (c+d x) \tan (c)\right )}{192 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]*(a + a*Sec[c + d*x])^3,x]

[Out]

-1/192*(a^3*Sec[(c + d*x)/2]^6*(1 + Sec[c + d*x])^3*(60*Cos[c + d*x]^3*(Log[Cos[(c + d*x)/2] - Sin[(c + d*x)/2
]] - Log[Cos[(c + d*x)/2] + Sin[(c + d*x)/2]]) - Sec[c]*(50*Sin[d*x] - 20*Sin[2*c + d*x] + 9*Sin[c + 2*d*x] +
9*Sin[3*c + 2*d*x] + 22*Sin[2*c + 3*d*x]) - 4*Cos[c + d*x]*Tan[c]))/d

________________________________________________________________________________________

Maple [A]
time = 0.06, size = 94, normalized size = 1.31

method result size
derivativedivides \(\frac {-a^{3} \left (-\frac {2}{3}-\frac {\left (\sec ^{2}\left (d x +c \right )\right )}{3}\right ) \tan \left (d x +c \right )+3 a^{3} \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+3 a^{3} \tan \left (d x +c \right )+a^{3} \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{d}\) \(94\)
default \(\frac {-a^{3} \left (-\frac {2}{3}-\frac {\left (\sec ^{2}\left (d x +c \right )\right )}{3}\right ) \tan \left (d x +c \right )+3 a^{3} \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+3 a^{3} \tan \left (d x +c \right )+a^{3} \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{d}\) \(94\)
risch \(-\frac {i a^{3} \left (9 \,{\mathrm e}^{5 i \left (d x +c \right )}-18 \,{\mathrm e}^{4 i \left (d x +c \right )}-48 \,{\mathrm e}^{2 i \left (d x +c \right )}-9 \,{\mathrm e}^{i \left (d x +c \right )}-22\right )}{3 d \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{3}}+\frac {5 a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{2 d}-\frac {5 a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{2 d}\) \(112\)
norman \(\frac {-\frac {11 a^{3} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{d}+\frac {40 a^{3} \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d}-\frac {5 a^{3} \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}}{\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{3}}-\frac {5 a^{3} \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{2 d}+\frac {5 a^{3} \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{2 d}\) \(114\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)*(a+a*sec(d*x+c))^3,x,method=_RETURNVERBOSE)

[Out]

1/d*(-a^3*(-2/3-1/3*sec(d*x+c)^2)*tan(d*x+c)+3*a^3*(1/2*sec(d*x+c)*tan(d*x+c)+1/2*ln(sec(d*x+c)+tan(d*x+c)))+3
*a^3*tan(d*x+c)+a^3*ln(sec(d*x+c)+tan(d*x+c)))

________________________________________________________________________________________

Maxima [A]
time = 0.29, size = 104, normalized size = 1.44 \begin {gather*} \frac {4 \, {\left (\tan \left (d x + c\right )^{3} + 3 \, \tan \left (d x + c\right )\right )} a^{3} - 9 \, a^{3} {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 12 \, a^{3} \log \left (\sec \left (d x + c\right ) + \tan \left (d x + c\right )\right ) + 36 \, a^{3} \tan \left (d x + c\right )}{12 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(a+a*sec(d*x+c))^3,x, algorithm="maxima")

[Out]

1/12*(4*(tan(d*x + c)^3 + 3*tan(d*x + c))*a^3 - 9*a^3*(2*sin(d*x + c)/(sin(d*x + c)^2 - 1) - log(sin(d*x + c)
+ 1) + log(sin(d*x + c) - 1)) + 12*a^3*log(sec(d*x + c) + tan(d*x + c)) + 36*a^3*tan(d*x + c))/d

________________________________________________________________________________________

Fricas [A]
time = 4.01, size = 98, normalized size = 1.36 \begin {gather*} \frac {15 \, a^{3} \cos \left (d x + c\right )^{3} \log \left (\sin \left (d x + c\right ) + 1\right ) - 15 \, a^{3} \cos \left (d x + c\right )^{3} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (22 \, a^{3} \cos \left (d x + c\right )^{2} + 9 \, a^{3} \cos \left (d x + c\right ) + 2 \, a^{3}\right )} \sin \left (d x + c\right )}{12 \, d \cos \left (d x + c\right )^{3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(a+a*sec(d*x+c))^3,x, algorithm="fricas")

[Out]

1/12*(15*a^3*cos(d*x + c)^3*log(sin(d*x + c) + 1) - 15*a^3*cos(d*x + c)^3*log(-sin(d*x + c) + 1) + 2*(22*a^3*c
os(d*x + c)^2 + 9*a^3*cos(d*x + c) + 2*a^3)*sin(d*x + c))/(d*cos(d*x + c)^3)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} a^{3} \left (\int \sec {\left (c + d x \right )}\, dx + \int 3 \sec ^{2}{\left (c + d x \right )}\, dx + \int 3 \sec ^{3}{\left (c + d x \right )}\, dx + \int \sec ^{4}{\left (c + d x \right )}\, dx\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(a+a*sec(d*x+c))**3,x)

[Out]

a**3*(Integral(sec(c + d*x), x) + Integral(3*sec(c + d*x)**2, x) + Integral(3*sec(c + d*x)**3, x) + Integral(s
ec(c + d*x)**4, x))

________________________________________________________________________________________

Giac [A]
time = 0.52, size = 106, normalized size = 1.47 \begin {gather*} \frac {15 \, a^{3} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right ) - 15 \, a^{3} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) - \frac {2 \, {\left (15 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 40 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 33 \, a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{3}}}{6 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)*(a+a*sec(d*x+c))^3,x, algorithm="giac")

[Out]

1/6*(15*a^3*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - 15*a^3*log(abs(tan(1/2*d*x + 1/2*c) - 1)) - 2*(15*a^3*tan(1/2
*d*x + 1/2*c)^5 - 40*a^3*tan(1/2*d*x + 1/2*c)^3 + 33*a^3*tan(1/2*d*x + 1/2*c))/(tan(1/2*d*x + 1/2*c)^2 - 1)^3)
/d

________________________________________________________________________________________

Mupad [B]
time = 2.57, size = 112, normalized size = 1.56 \begin {gather*} \frac {5\,a^3\,\mathrm {atanh}\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{d}-\frac {5\,a^3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5-\frac {40\,a^3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{3}+11\,a^3\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{d\,\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6-3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2-1\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a/cos(c + d*x))^3/cos(c + d*x),x)

[Out]

(5*a^3*atanh(tan(c/2 + (d*x)/2)))/d - (5*a^3*tan(c/2 + (d*x)/2)^5 - (40*a^3*tan(c/2 + (d*x)/2)^3)/3 + 11*a^3*t
an(c/2 + (d*x)/2))/(d*(3*tan(c/2 + (d*x)/2)^2 - 3*tan(c/2 + (d*x)/2)^4 + tan(c/2 + (d*x)/2)^6 - 1))

________________________________________________________________________________________